Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/767
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:16Z-
dc.date.available2022-08-15T15:00:16Z-
dc.date.issued2012-10-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/767-
dc.description.abstractWe determine all trees whose second largest eigenvalue does not exceed √2. Next, we consider two classes of bipartite graphs, regular and semiregular, with small number of distinct eigenvalues. For all graphs considered we determine those whose second largest eigenvalue is equal to √2. Some additional results are also given. © 2012 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subject(Semi)regular bipartite graphsen_US
dc.subjectAdjacency matrixen_US
dc.subjectSecond largest eigenvalueen_US
dc.subjectTreesen_US
dc.titleSome graphs whose second largest eigenvalue does not exceed √2en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2012.04.044-
dc.identifier.scopus2-s2.0-84863987659-
dc.identifier.isi000307372200026-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84863987659-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0024-3795en_US
dc.description.rankM22en_US
dc.relation.firstpage1812en_US
dc.relation.lastpage1820en_US
dc.relation.volume437en_US
dc.relation.issue7en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Jun 11, 2025

Page view(s)

16
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.