Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/767
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:16Z-
dc.date.available2022-08-15T15:00:16Z-
dc.date.issued2012-10-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/767-
dc.description.abstractWe determine all trees whose second largest eigenvalue does not exceed √2. Next, we consider two classes of bipartite graphs, regular and semiregular, with small number of distinct eigenvalues. For all graphs considered we determine those whose second largest eigenvalue is equal to √2. Some additional results are also given. © 2012 Elsevier Ltd. All rights reserved.en
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subject(Semi)regular bipartite graphsen
dc.subjectAdjacency matrixen
dc.subjectSecond largest eigenvalueen
dc.subjectTreesen
dc.titleSome graphs whose second largest eigenvalue does not exceed √2en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2012.04.044-
dc.identifier.scopus2-s2.0-84863987659-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84863987659-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage1812en
dc.relation.lastpage1820en
dc.relation.volume437en
dc.relation.issue7en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 8, 2024

Page view(s)

13
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.