Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/763
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:15Z-
dc.date.available2022-08-15T15:00:15Z-
dc.date.issued2009-11-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/763-
dc.description.abstractWe consider the class of caterpillars with four terminal vertices. Here we prove that every of such caterpillar whose internal path differs in length from both 1 to 3 is uniquely determined by its Laplacian spectrum. Next we take into consideration the remaining two possibilities for the internal path. In the first situation we prove that there is exactly one caterpillar which is not determined by its Laplacian spectrum, while we find an infinite family of such caterpillars in the second. Finally, some observations are given. © 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectCaterpillaren_US
dc.subjectLaplacian spectrumen_US
dc.subjectSpectral determinationen_US
dc.titleOn determination of caterpillars with four terminal vertices by their Laplacian spectrumen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2009.06.041-
dc.identifier.scopus2-s2.0-70049088079-
dc.identifier.isi000271346400004-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/70049088079-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0024-3795en_US
dc.description.rankM22en_US
dc.relation.firstpage2035en_US
dc.relation.lastpage2048en_US
dc.relation.volume431en_US
dc.relation.issue11en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

10
checked on Jun 11, 2025

Page view(s)

19
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.