Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/760
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:15Z-
dc.date.available2022-08-15T15:00:15Z-
dc.date.issued2009-01-01-
dc.identifier.issn03817032en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/760-
dc.description.abstractWe consider the problem of determining the Q-integral graphs, i.e. the graphs with integral signless Laplacian spectrum. First, we determine some infinite series of such graphs having the other two spectra (the usual one and the Laplacian) integral. We also completely determine all (2, s)-semiregular bipartite graphs with integral signless Laplacian spectrum. Finally, we give some results concerning (3, 4) and (3, 5)-semiregular bipartite graphs with the same property.en_US
dc.language.isoenen_US
dc.publisherWinnipeg : Charles Babbage Research Centeren_US
dc.relation.ispartofArs Combinatoriaen_US
dc.subjectIntegral eigenvaluesen_US
dc.subjectSemiregular bipartite graphsen_US
dc.subjectSignless Laplacian spectrumen_US
dc.titleSome results on Q-integral graphsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-60749134021-
dc.identifier.isi000263045400026-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/60749134021-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0381-7032en_US
dc.description.rankM23en_US
dc.relation.firstpage321en_US
dc.relation.lastpage335en_US
dc.relation.volume90en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

13
checked on Mar 28, 2025

Page view(s)

15
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.