Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/755
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Biyikoglu, Turker | en_US |
dc.contributor.author | Simic, Slobodan K. | en_US |
dc.contributor.author | Stanić, Zoran | en_US |
dc.date.accessioned | 2022-08-15T15:00:15Z | - |
dc.date.available | 2022-08-15T15:00:15Z | - |
dc.date.issued | 2011-07-01 | - |
dc.identifier.issn | 03817032 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/755 | - |
dc.description.abstract | A cograph is a P4-free graph. We first give a short proof of the fact that 0 (-1) belongs to the spectrum of a connected cograph (with at least two vertices) if and only if it contains duplicate (resp. coduplicate) vertices. As a consequence, we next prove that the polynomial reconstruction of graphs whose vertex-deleted subgraphs have the second largest eigenvalue not exceeding √5-1/2 is unique. | en |
dc.relation.ispartof | Ars Combinatoria | en_US |
dc.subject | σ-graph | en |
dc.subject | Characteristic polynomial | en |
dc.subject | Cograph | en |
dc.subject | Eigenvalues | en |
dc.subject | Polynomial reconstruction | en |
dc.title | Some notes on spectra of cographs | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 2-s2.0-79959471030 | - |
dc.identifier.isi | 000291893800036 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/79959471030 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.issn | 0381-7032 | en_US |
dc.description.rank | M23 | en_US |
dc.relation.firstpage | 421 | en_US |
dc.relation.lastpage | 434 | en_US |
dc.relation.volume | 100 | en_US |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-4949-4203 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
29
checked on Mar 29, 2025
Page view(s)
10
checked on Jan 19, 2025
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.