Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/755
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Biyikoglu, Turker | en_US |
dc.contributor.author | Simic, Slobodan K. | en_US |
dc.contributor.author | Stanić, Zoran | en_US |
dc.date.accessioned | 2022-08-15T15:00:15Z | - |
dc.date.available | 2022-08-15T15:00:15Z | - |
dc.date.issued | 2011-07-01 | - |
dc.identifier.issn | 03817032 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/755 | - |
dc.description.abstract | A cograph is a P4-free graph. We first give a short proof of the fact that 0 (-1) belongs to the spectrum of a connected cograph (with at least two vertices) if and only if it contains duplicate (resp. coduplicate) vertices. As a consequence, we next prove that the polynomial reconstruction of graphs whose vertex-deleted subgraphs have the second largest eigenvalue not exceeding √5-1/2 is unique. | en |
dc.relation.ispartof | Ars Combinatoria | en |
dc.subject | σ-graph | en |
dc.subject | Characteristic polynomial | en |
dc.subject | Cograph | en |
dc.subject | Eigenvalues | en |
dc.subject | Polynomial reconstruction | en |
dc.title | Some notes on spectra of cographs | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 2-s2.0-79959471030 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/79959471030 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.firstpage | 421 | en |
dc.relation.lastpage | 434 | en |
dc.relation.volume | 100 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-4949-4203 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
28
checked on Nov 8, 2024
Page view(s)
9
checked on Nov 15, 2024
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.