Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/755
DC FieldValueLanguage
dc.contributor.authorBiyikoglu, Turkeren_US
dc.contributor.authorSimic, Slobodan K.en_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:15Z-
dc.date.available2022-08-15T15:00:15Z-
dc.date.issued2011-07-01-
dc.identifier.issn03817032en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/755-
dc.description.abstractA cograph is a P4-free graph. We first give a short proof of the fact that 0 (-1) belongs to the spectrum of a connected cograph (with at least two vertices) if and only if it contains duplicate (resp. coduplicate) vertices. As a consequence, we next prove that the polynomial reconstruction of graphs whose vertex-deleted subgraphs have the second largest eigenvalue not exceeding √5-1/2 is unique.en
dc.relation.ispartofArs Combinatoriaen
dc.subjectσ-graphen
dc.subjectCharacteristic polynomialen
dc.subjectCographen
dc.subjectEigenvaluesen
dc.subjectPolynomial reconstructionen
dc.titleSome notes on spectra of cographsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-79959471030-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/79959471030-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage421en
dc.relation.lastpage434en
dc.relation.volume100en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

28
checked on Nov 8, 2024

Page view(s)

9
checked on Nov 15, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.