Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/753
DC FieldValueLanguage
dc.contributor.authorCardoso, Domingos M.en_US
dc.contributor.authorCarvalho, Paulaen_US
dc.contributor.authorRama, Paulaen_US
dc.contributor.authorSimić, Slobodan K.en_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:14Z-
dc.date.available2022-08-15T15:00:14Z-
dc.date.issued2017-01-01-
dc.identifier.issn14528630en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/753-
dc.description.abstractFor a (simple) graph H and non-negative integers c0; c1; ... ; cd (cd ≠ 0), p(H) =Σkd=0 ck . Hk is the lexicographic polynomial in H of degree d, where the sum of two graphs is their join and ck . Hk is the join of ck copies of Hk. The graph Hk is the kth power of H with respect to the lexicographic product (H0 = K1). The spectrum (if H is connected and regular) and the Laplacian spectrum (in general case) of p(H) are determined in terms of the spectrum of H and ck's. Constructions of infinite families of cospectral or integral graphs are announced.en
dc.relation.ispartofApplicable Analysis and Discrete Mathematicsen
dc.subjectAdjacency matrixen
dc.subjectCospectral graphsen
dc.subjectIntegral graphsen
dc.subjectLaplacian matrixen
dc.subjectLexicographic producten
dc.titleLexicographic polynomials of graphs and their spectraen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/AADM1702258C-
dc.identifier.scopus2-s2.0-85031944955-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85031944955-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage258en
dc.relation.lastpage272en
dc.relation.volume11en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 8, 2024

Page view(s)

10
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.