Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/753
DC FieldValueLanguage
dc.contributor.authorCardoso, Domingos M.en_US
dc.contributor.authorCarvalho, Paulaen_US
dc.contributor.authorRama, Paulaen_US
dc.contributor.authorSimić, Slobodan K.en_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:14Z-
dc.date.available2022-08-15T15:00:14Z-
dc.date.issued2017-01-01-
dc.identifier.issn14528630en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/753-
dc.description.abstractFor a (simple) graph H and non-negative integers c0; c1; ... ; cd (cd ≠ 0), p(H) =Σkd=0 ck . Hk is the lexicographic polynomial in H of degree d, where the sum of two graphs is their join and ck . Hk is the join of ck copies of Hk. The graph Hk is the kth power of H with respect to the lexicographic product (H0 = K1). The spectrum (if H is connected and regular) and the Laplacian spectrum (in general case) of p(H) are determined in terms of the spectrum of H and ck's. Constructions of infinite families of cospectral or integral graphs are announced.en_US
dc.language.isoenen_US
dc.publisherBeograd : Elektrotehnički fakulteten_US
dc.relation.ispartofApplicable Analysis and Discrete Mathematicsen_US
dc.subjectAdjacency matrixen_US
dc.subjectCospectral graphsen_US
dc.subjectIntegral graphsen_US
dc.subjectLaplacian matrixen_US
dc.subjectLexicographic producten_US
dc.titleLexicographic polynomials of graphs and their spectraen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/AADM1702258C-
dc.identifier.scopus2-s2.0-85031944955-
dc.identifier.isi000414668600002-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85031944955-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn1452-8630en_US
dc.description.rankM22en_US
dc.relation.firstpage258en_US
dc.relation.lastpage272en_US
dc.relation.volume11en_US
dc.relation.issue2en_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Aug 24, 2025

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.