Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/750
DC FieldValueLanguage
dc.contributor.authorKoledin, Tamaraen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:14Z-
dc.date.available2022-08-15T15:00:14Z-
dc.date.issued2013-01-31-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/750-
dc.description.abstractWe derive some structural and spectral properties of regular bipartite graphs with three distinct non-negative eigenvalues. Next, we consider the relations between these graphs and two-class partially balanced incomplete block designs, and we present a number of situations when the graphs we consider are in fact the incidence graphs of those designs. As a consequence, we give a several constructions of connected regular bipartite graphs with six distinct eigenvalues, and we also determine all such graphs with degree 3, and all such graphs on at most 20 vertices.© 2012 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectAdjacency matrixen_US
dc.subjectBipartite graphsen_US
dc.subjectBlock designsen_US
dc.subjectEigenvaluesen_US
dc.subjectRegular graphsen_US
dc.titleRegular bipartite graphs with three distinct non-negative eigenvaluesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2012.12.036-
dc.identifier.scopus2-s2.0-84875464586-
dc.identifier.isi000316521500012-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84875464586-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0024-3795en_US
dc.description.rankM22en_US
dc.relation.firstpage3336en_US
dc.relation.lastpage3349en_US
dc.relation.volume438en_US
dc.relation.issue8en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Mar 28, 2025

Page view(s)

11
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.