Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/745
DC FieldValueLanguage
dc.contributor.authorJovovic, Ivanaen_US
dc.contributor.authorKoledin, Tamaraen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:13Z-
dc.date.available2022-08-15T15:00:13Z-
dc.date.issued2018-01-01-
dc.identifier.issn18553966en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/745-
dc.description.abstractContinuing the previous research, we consider trees with given number of vertices and minimal spectral gap. Using the computer search, we conjecture that this spectral invariant is minimized for double comet trees. The conjecture is confirmed for trees with at most 20 vertices; simultaneously no counterexamples are encountered. We provide theoretical results concerning double comets and putative trees that minimize the spectral gap. We also compare the spectral gap of regular graphs and paths. Finally, a sequence of inequalities that involve the same invariant is obtained.en
dc.relation.ispartofArs Mathematica Contemporaneaen
dc.subjectDouble cometen
dc.subjectExtremal valuesen
dc.subjectGraph eigenvaluesen
dc.subjectNumerical computationen
dc.titleTrees with small spectral gapen_US
dc.typeArticleen_US
dc.identifier.doi10.26493/1855-3974.992.68d-
dc.identifier.scopus2-s2.0-85032722305-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85032722305-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage197en
dc.relation.lastpage207en
dc.relation.volume14en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

9
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.