Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/741
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:13Z-
dc.date.available2022-08-15T15:00:13Z-
dc.date.issued2020-01-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/741-
dc.description.abstractWe denote by n and μn the number of vertices and the least Laplacian eigenvalue of a signed graph, respectively. A connected unbalanced signed graph without cut-vertices is called an unbalanced block. We prove that [Formula presented] holds for every unbalanced block G˙, where lu denotes the length of the longest negative cycle in G˙. We also prove that [Formula presented] (g(n1,n2,…,nk) being the geometric mean of given arguments) holds for every signed graph G˙ which contains k edge-disjoint spanning subgraphs such that the least Laplacian eigenvalue of the ith of them is not less than the least Laplacian eigenvalue of the negative cycle C˙ni. Using this result, we prove that [Formula presented] holds for every unbalanced block with k edge-disjoint negative Hamiltonian cycles.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectHamiltonian cycleen_US
dc.subjectLaplacian eigenvalueen_US
dc.subjectSwitching equivalenceen_US
dc.subjectUnbalanced signed graphen_US
dc.titleLower bounds for the least Laplacian eigenvalue of unbalanced blocksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2019.09.009-
dc.identifier.scopus2-s2.0-85072516535-
dc.identifier.isi000495478900006-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85072516535-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0024-3795en_US
dc.description.rankM21en_US
dc.relation.firstpage145en_US
dc.relation.lastpage152en_US
dc.relation.volume584en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Jun 11, 2025

Page view(s)

16
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.