Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/739
DC FieldValueLanguage
dc.contributor.authorRamezani, Farzanehen_US
dc.contributor.authorRowlinson, Peteren_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:13Z-
dc.date.available2022-08-15T15:00:13Z-
dc.date.issued2020-10-01-
dc.identifier.issn0012365Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/739-
dc.description.abstractGiven a signed graph Σ with n vertices, let μ be an eigenvalue of Σ, and let t be the codimension of the corresponding eigenspace. We prove that [Formula presented] whenever μ∉{0,1,−1}. We show that this bound is sharp by providing examples of signed graphs in which it is attained. We also discuss particular cases in which the bound can be decreased.en
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectEigenvalue multiplicityen
dc.subjectNet-regular signed graphen
dc.subjectSigned graphen
dc.subjectStar complementen
dc.titleOn eigenvalue multiplicity in signed graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2020.111982-
dc.identifier.scopus2-s2.0-85085372616-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85085372616-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.volume343en
dc.relation.issue10en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 15, 2024

Page view(s)

8
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.