Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/739
DC FieldValueLanguage
dc.contributor.authorRamezani, Farzanehen_US
dc.contributor.authorRowlinson, Peteren_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:13Z-
dc.date.available2022-08-15T15:00:13Z-
dc.date.issued2020-10-01-
dc.identifier.issn0012365Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/739-
dc.description.abstractGiven a signed graph Σ with n vertices, let μ be an eigenvalue of Σ, and let t be the codimension of the corresponding eigenspace. We prove that [Formula presented] whenever μ∉{0,1,−1}. We show that this bound is sharp by providing examples of signed graphs in which it is attained. We also discuss particular cases in which the bound can be decreased.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofDiscrete Mathematicsen_US
dc.subjectEigenvalue multiplicityen_US
dc.subjectNet-regular signed graphen_US
dc.subjectSigned graphen_US
dc.subjectStar complementen_US
dc.titleOn eigenvalue multiplicity in signed graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2020.111982-
dc.identifier.scopus2-s2.0-85085372616-
dc.identifier.isi000558591300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85085372616-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0012-365Xen_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. 111982en_US
dc.relation.volume343en_US
dc.relation.issue10en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

10
checked on Mar 29, 2025

Page view(s)

8
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.