Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/739
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ramezani, Farzaneh | en_US |
dc.contributor.author | Rowlinson, Peter | en_US |
dc.contributor.author | Stanić, Zoran | en_US |
dc.date.accessioned | 2022-08-15T15:00:13Z | - |
dc.date.available | 2022-08-15T15:00:13Z | - |
dc.date.issued | 2020-10-01 | - |
dc.identifier.issn | 0012365X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/739 | - |
dc.description.abstract | Given a signed graph Σ with n vertices, let μ be an eigenvalue of Σ, and let t be the codimension of the corresponding eigenspace. We prove that [Formula presented] whenever μ∉{0,1,−1}. We show that this bound is sharp by providing examples of signed graphs in which it is attained. We also discuss particular cases in which the bound can be decreased. | en |
dc.relation.ispartof | Discrete Mathematics | en |
dc.subject | Eigenvalue multiplicity | en |
dc.subject | Net-regular signed graph | en |
dc.subject | Signed graph | en |
dc.subject | Star complement | en |
dc.title | On eigenvalue multiplicity in signed graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.disc.2020.111982 | - |
dc.identifier.scopus | 2-s2.0-85085372616 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85085372616 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.volume | 343 | en |
dc.relation.issue | 10 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-4949-4203 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
10
checked on Nov 15, 2024
Page view(s)
8
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.