Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/736
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:12Z-
dc.date.available2022-08-15T15:00:12Z-
dc.date.issued2019-01-01-
dc.identifier.issn12203874en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/736-
dc.description.abstractFor a vertex i of a signed graph, let di, mi and T-i denote its degree, average 2-degree and the number of unbalanced triangles passing through i, respectively. We prove that (Equation presented) where ρ stands for the largest eigenvalue. This bound is tight at least for regular signed graphs that are switching equivalent to their underlying graphs. We also derive a general lower bound for ρ and certain practical consequences. A discussion, including the cases of equality in inequalities obtained and some examples, is given.en
dc.relation.ispartofBulletin Mathematique de la Societe des Sciences Mathematiques de Roumanieen
dc.subjectIndexen
dc.subjectNet-balanceen
dc.subjectSigned graphen
dc.subjectSwitching equivalenceen
dc.subjectVertex degreeen
dc.titleSome bounds for the largest eigenvalue of a signed graphen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85072586413-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85072586413-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage183en
dc.relation.lastpage189en
dc.relation.volume62en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 8, 2024

Page view(s)

11
checked on Nov 15, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.