Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/735
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Anđelić, Milica | en_US |
dc.contributor.author | Koledin, Tamara | en_US |
dc.contributor.author | Stanić, Zoran | en_US |
dc.date.accessioned | 2022-08-15T15:00:12Z | - |
dc.date.available | 2022-08-15T15:00:12Z | - |
dc.date.issued | 2019-01-01 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/735 | - |
dc.description.abstract | We consider a particular class of signed threshold graphs and their eigenvalues. If Ä is such a threshold graph and Q(Ä) is a quotient matrix that arises from the equitable partition of Ä , then we use a sequence of elementary matrix operations to prove that the matrix Q(Ä)-xI (x â â.,?) is row equivalent to a tridiagonal matrix whose determinant is, under certain conditions, of the constant sign. In this way we determine certain intervals in which Ä has no eigenvalues. | en |
dc.relation.ispartof | Special Matrices | en |
dc.subject | eigenvalue interval | en |
dc.subject | signed graph | en |
dc.subject | threshold graph | en |
dc.subject | tridiagonal matrix | en |
dc.title | A note on the eigenvalue free intervals of some classes of signed threshold graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1515/spma-2019-0014 | - |
dc.identifier.scopus | 2-s2.0-85078447717 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85078447717 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.firstpage | 218 | en |
dc.relation.lastpage | 225 | en |
dc.relation.volume | 7 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-4949-4203 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
3
checked on Nov 15, 2024
Page view(s)
12
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.