Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/735
DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen_US
dc.contributor.authorKoledin, Tamaraen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:12Z-
dc.date.available2022-08-15T15:00:12Z-
dc.date.issued2019-01-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/735-
dc.description.abstractWe consider a particular class of signed threshold graphs and their eigenvalues. If Ä is such a threshold graph and Q(Ä) is a quotient matrix that arises from the equitable partition of Ä , then we use a sequence of elementary matrix operations to prove that the matrix Q(Ä)-xI (x â â.,?) is row equivalent to a tridiagonal matrix whose determinant is, under certain conditions, of the constant sign. In this way we determine certain intervals in which Ä has no eigenvalues.en
dc.relation.ispartofSpecial Matricesen
dc.subjecteigenvalue intervalen
dc.subjectsigned graphen
dc.subjectthreshold graphen
dc.subjecttridiagonal matrixen
dc.titleA note on the eigenvalue free intervals of some classes of signed threshold graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/spma-2019-0014-
dc.identifier.scopus2-s2.0-85078447717-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85078447717-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage218en
dc.relation.lastpage225en
dc.relation.volume7en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

Page view(s)

12
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.