Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/733
DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen_US
dc.contributor.authorBrunetti, Maurizioen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:12Z-
dc.date.available2022-08-15T15:00:12Z-
dc.date.issued2020-09-01-
dc.identifier.issn09110119en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/733-
dc.description.abstractLet LG be the Laplacian matrix of a graph G with n vertices, and let b be a binary vector of length n. The pair (LG, b) is said to be controllable (and we also say that G is Laplacian controllable for b) if LG has no eigenvector orthogonal to b. In this paper we study the Laplacian controllability of joins, Cartesian products, tensor products and strong products of two graphs. Besides some theoretical results, we give an iterative construction of infinite families of controllable pairs (LG, b).en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofGraphs and Combinatoricsen_US
dc.subjectCartesian producten_US
dc.subjectControllabilityen_US
dc.subjectJoinen_US
dc.subjectLaplacian eigenvaluesen_US
dc.subjectStrong producten_US
dc.subjectTensor producten_US
dc.titleLaplacian Controllability for Graphs Obtained by Some Standard Productsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00373-020-02212-6-
dc.identifier.scopus2-s2.0-85089064517-
dc.identifier.isi000557329600001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85089064517-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0911-0119en_US
dc.description.rankM23en_US
dc.relation.firstpage1593en_US
dc.relation.lastpage1602en_US
dc.relation.volume36en_US
dc.relation.issue5en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Mar 29, 2025

Page view(s)

14
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.