Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/731
DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen_US
dc.contributor.authorCardoso, Domingos M.en_US
dc.contributor.authorSimić, Slobodan K.en_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:12Z-
dc.date.available2022-08-15T15:00:12Z-
dc.date.issued2021-
dc.identifier.issn0012365Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/731-
dc.description.abstractA vertex v∈V(G) is called λ-main if it belongs to a star set X⊂V(G) of the eigenvalue λ of a graph G and this eigenvalue is main for the graph obtained from G by deleting all the vertices in X∖{v}; otherwise, v is λ-non-main. Some results concerning main and non-main vertices of an eigenvalue are deduced. For a main eigenvalue λ of a graph G, we introduce the minimum and maximum number of λ-main vertices in some λ-star set of G as new graph invariant parameters. The determination of these parameters is formulated as a combinatorial optimization problem based on a simplex-like approach. Using these and some related parameters we develop new spectral tools that can be used in the research of the isomorphism problem. Examples of graphs for which the maximum number of λ-main vertices coincides with the cardinality of a λ-star set are provided.en
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectIsomorphism problemen
dc.subjectMain eigenvalueen
dc.subjectMain vertexen
dc.subjectStar seten
dc.titleThe main vertices of a star set and related graph parametersen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2021.112593-
dc.identifier.scopus2-s2.0-85114471927-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85114471927-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.description.rankM22en_US
dc.relation.volume344en
dc.relation.issue12en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

15
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.