Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/729
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:12Z-
dc.date.available2022-08-15T15:00:12Z-
dc.date.issued2020-01-01-
dc.identifier.issn18553966en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/729-
dc.description.abstractA connected signed graph is called exceptional if it has a representation in the root system E8, but has not in any Dk. In this study we obtain some properties of these signed graphs, mostly expressed in terms of those that are maximal with a fixed number of eigenvalues distinct from -2. As an application, we characterize exceptional signed graphs with exactly 2 eigenvalues. In some particular cases, we prove the (non-)existence of such signed graphs.en
dc.relation.ispartofArs Mathematica Contemporaneaen
dc.subjectAdjacency matrixen
dc.subjectExceptional signed graphen
dc.subjectLeast eigenvalueen
dc.subjectRoot systemen
dc.subjectSigned graph decompositionen
dc.subjectSigned line graphen
dc.titleNotes on exceptional signed graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.26493/1855-3974.1933.2DF-
dc.identifier.scopus2-s2.0-85092775353-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85092775353-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage105en
dc.relation.lastpage115en
dc.relation.volume18en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 15, 2024

Page view(s)

10
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.