Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/727
DC FieldValueLanguage
dc.contributor.authorRamezani, Farzanehen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:12Z-
dc.date.available2022-08-15T15:00:12Z-
dc.date.issued2021-01-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/727-
dc.description.abstractWe prove that µ1 ≤ max {√ 2(di2 + dimi - 2Ti+): 1 ≤ i ≤ n}, where µ1 is the Laplacian index of a signed graph Ġ with n vertices and, for a vertex i, the symbols di, mi and T+i denote its degree, average 2-degree and the number of positive triangles containing i, respectively. We also show that equality holds if and only if Ġ is switching equivalent to a regular signed graph with all edges being negative. Apart from this result, we derive some other upper bounds for µ1, make some comparisons and conclude by finding a lower bound for the same eigenvalue.en
dc.relation.ispartofDiscrete Mathematics Lettersen
dc.subjectLargest eigenvalueen
dc.subjectRegular signed graphen
dc.subjectSigned graphen
dc.subjectVertex degreeen
dc.titleAn upper bound for the laplacian index of a signed graphen_US
dc.typeArticleen_US
dc.identifier.doi10.47443/dml.2020.0067-
dc.identifier.scopus2-s2.0-85105560804-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85105560804-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.description.rankM51en_US
dc.relation.firstpage24en
dc.relation.lastpage28en
dc.relation.volume5en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 8, 2024

Page view(s)

14
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.