Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/727
DC FieldValueLanguage
dc.contributor.authorRamezani, Farzanehen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:12Z-
dc.date.available2022-08-15T15:00:12Z-
dc.date.issued2021-01-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/727-
dc.description.abstractWe prove that µ1 ≤ max {√ 2(di2 + dimi - 2Ti+): 1 ≤ i ≤ n}, where µ1 is the Laplacian index of a signed graph Ġ with n vertices and, for a vertex i, the symbols di, mi and T+i denote its degree, average 2-degree and the number of positive triangles containing i, respectively. We also show that equality holds if and only if Ġ is switching equivalent to a regular signed graph with all edges being negative. Apart from this result, we derive some other upper bounds for µ1, make some comparisons and conclude by finding a lower bound for the same eigenvalue.en_US
dc.language.isoenen_US
dc.relation.ispartofDiscrete Mathematics Lettersen_US
dc.subjectLargest eigenvalueen_US
dc.subjectRegular signed graphen_US
dc.subjectSigned graphen_US
dc.subjectVertex degreeen_US
dc.titleAn upper bound for the Laplacian index of a signed graphen_US
dc.typeArticleen_US
dc.identifier.doi10.47443/dml.2020.0067-
dc.identifier.scopus2-s2.0-85105560804-
dc.identifier.isi000894304900005-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85105560804-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn2664-2557en_US
dc.relation.firstpage24en_US
dc.relation.lastpage28en_US
dc.relation.volume5en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 27, 2025

Page view(s)

14
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.