Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/725
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:11Z-
dc.date.available2022-08-15T15:00:11Z-
dc.date.issued2022-
dc.identifier.issn12343099en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/725-
dc.description.abstractGiven a signed graph G, let AG and DG± denote its standard adjacency matrix and the diagonal matrix of vertex net-degrees, respectively. The net Laplacian matrix of is defined to be NG = NG±-AG. In this study we give some properties of the eigenvalues of NG. In particular, we consider their behaviour under some edge perturbations, establish some relations between them and the eigenvalues of the standard Laplacian matrix and give some lower and upper bounds for the largest eigenvalue of NG.en
dc.relation.ispartofDiscussiones Mathematicae - Graph Theoryen
dc.subject(net) Laplacian matrixen
dc.subjectedge perturbationsen
dc.subjectlargest eigenvalueen
dc.subjectnet-degreeen
dc.titleSome Properties of the Eigenvalues of the Net Laplacian Matrix of a Signed Graphen_US
dc.typeArticleen_US
dc.identifier.doi10.7151/dmgt.2314-
dc.identifier.scopus2-s2.0-85086047795-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85086047795-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage893en
dc.relation.lastpage903en
dc.relation.volume42en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 8, 2024

Page view(s)

21
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.