Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/719
DC FieldValueLanguage
dc.contributor.authorBrunetti, Maurizioen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:11Z-
dc.date.available2022-08-15T15:00:11Z-
dc.date.issued2022-
dc.identifier.issn22383603en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/719-
dc.description.abstractLet G˙ = (G, σ) be a signed graph, and let ρ(G˙ ) (resp. λ1(G˙ ) ) denote the spectral radius (resp. the index) of the adjacency matrix AG˙. In this paper we detect the signed graphs achieving the minimum spectral radius m(SRn) , the maximum spectral radius M(SRn) , the minimum index m(In) and the maximum index M(In) in the set Un of all unbalanced connected signed graphs with n⩾ 3 vertices. From the explicit computation of the four extremal values it turns out that the difference m(SRn) - m(In) for n⩾ 8 strictly increases with n and tends to 1, whereas M(SRn) - M(In) strictly decreases and tends to 0.en
dc.relation.ispartofComputational and Applied Mathematicsen
dc.subjectIndexen
dc.subjectSigned graphen
dc.subjectSpectral radiusen
dc.subjectSwitching equivalenceen
dc.subjectUnbalanced graphen
dc.titleUnbalanced signed graphs with extremal spectral radius or indexen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s40314-022-01814-5-
dc.identifier.scopus2-s2.0-85127282894-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85127282894-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.volume41en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 8, 2024

Page view(s)

22
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.