Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/719
DC FieldValueLanguage
dc.contributor.authorBrunetti, Maurizioen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:11Z-
dc.date.available2022-08-15T15:00:11Z-
dc.date.issued2022-
dc.identifier.issn22383603en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/719-
dc.description.abstractLet G˙ = (G, σ) be a signed graph, and let ρ(G˙ ) (resp. λ1(G˙ ) ) denote the spectral radius (resp. the index) of the adjacency matrix AG˙. In this paper we detect the signed graphs achieving the minimum spectral radius m(SRn) , the maximum spectral radius M(SRn) , the minimum index m(In) and the maximum index M(In) in the set Un of all unbalanced connected signed graphs with n⩾ 3 vertices. From the explicit computation of the four extremal values it turns out that the difference m(SRn) - m(In) for n⩾ 8 strictly increases with n and tends to 1, whereas M(SRn) - M(In) strictly decreases and tends to 0.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofComputational and Applied Mathematicsen_US
dc.subjectIndexen_US
dc.subjectSigned graphen_US
dc.subjectSpectral radiusen_US
dc.subjectSwitching equivalenceen_US
dc.subjectUnbalanced graphen_US
dc.titleUnbalanced signed graphs with extremal spectral radius or indexen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s40314-022-01814-5-
dc.identifier.scopus2-s2.0-85127282894-
dc.identifier.isi000783058800001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85127282894-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn2238-3603en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 118en_US
dc.relation.volume41en_US
dc.relation.issue3en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

10
checked on Apr 7, 2025

Page view(s)

24
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.