Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/716
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:10Z-
dc.date.available2022-08-15T15:00:10Z-
dc.date.issued2021-01-01-
dc.identifier.issn23382287en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/716-
dc.description.abstractThe second smallest eigenvalue of the Laplacian matrix of a graph G is called the algebraic connectivity and denoted by a (G). We prove that (Formula presented) holds for every non-trivial graph G which contains edge-disjoint spanning subgraphs G1, G2, …, Gq such that, for 1 i p, a (Gi) a (Pni), with ni 2, and, for p+ 1 i q, a (Gi) a (Cni), where Pni and Cni denote the path and the cycle of the corresponding order, respectively, and g denotes the geometric mean of given arguments. Among certain consequences, we emphasize the following lower bound (Formula presented) ≥ − referring to G which has n (n 2) vertices and contains p Hamiltonian paths and q p Hamiltonian cycles, such that all of them are edge-disjoint. We also discuss the quality of the obtained lower bounds.en
dc.relation.ispartofElectronic Journal of Graph Theory and Applicationsen
dc.subjectalgebraic connectivityen
dc.subjectedge-disjoint subgraphsen
dc.subjectgeometric meanen
dc.subjectHamiltonian cycleen
dc.subjectLaplacian matrixen
dc.titleLower bounds for the algebraic connectivity of graphs with specified subgraphsen_US
dc.typeArticleen_US
dc.identifier.doi10.5614/ejgta.2021.9.2.2-
dc.identifier.scopus2-s2.0-85119405945-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85119405945-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.description.rankM51en_US
dc.relation.firstpage257en
dc.relation.lastpage263en
dc.relation.volume9en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

Page view(s)

14
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.