Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/716
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:10Z-
dc.date.available2022-08-15T15:00:10Z-
dc.date.issued2021-01-01-
dc.identifier.issn23382287en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/716-
dc.description.abstractThe second smallest eigenvalue of the Laplacian matrix of a graph G is called the algebraic connectivity and denoted by a (G). We prove that (Formula presented) holds for every non-trivial graph G which contains edge-disjoint spanning subgraphs G1, G2, …, Gq such that, for 1 i p, a (Gi) a (Pni), with ni 2, and, for p+ 1 i q, a (Gi) a (Cni), where Pni and Cni denote the path and the cycle of the corresponding order, respectively, and g denotes the geometric mean of given arguments. Among certain consequences, we emphasize the following lower bound (Formula presented) ≥ − referring to G which has n (n 2) vertices and contains p Hamiltonian paths and q p Hamiltonian cycles, such that all of them are edge-disjoint. We also discuss the quality of the obtained lower bounds.en
dc.relation.ispartofElectronic Journal of Graph Theory and Applicationsen
dc.subjectalgebraic connectivityen
dc.subjectedge-disjoint subgraphsen
dc.subjectgeometric meanen
dc.subjectHamiltonian cycleen
dc.subjectLaplacian matrixen
dc.titleLower bounds for the algebraic connectivity of graphs with specified subgraphsen_US
dc.typeArticleen_US
dc.identifier.doi10.5614/ejgta.2021.9.2.2-
dc.identifier.scopus2-s2.0-85119405945-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85119405945-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage257en
dc.relation.lastpage263en
dc.relation.volume9en
dc.relation.issue2en
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 31, 2025

Page view(s)

14
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.