Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/713
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:10Z-
dc.date.available2022-08-15T15:00:10Z-
dc.date.issued2020-01-01-
dc.identifier.issn12203874en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/713-
dc.description.abstractGiven a signed graph G, let Ag, and D±g be its standard adjacency matrix and the diagonal matrix of vertex net-degrees, respectively. The net Laplacian matrix of G is defined to be Ng = D±g - Ag. In this paper we give some spectral properties of Ng. We also point out some advantages and some disadvantages of using the net Laplacian matrix instead of the standard Laplacian matrix in study of signed graphs.en
dc.publisherBucharest : Romanian Mathematical Society ; University of Bucharesten_US
dc.relation.ispartofBulletin Mathematique de la Societe des Sciences Mathematiques de Roumanieen_US
dc.subject(Net) Laplacian matrixen
dc.subjectGraph producten
dc.subjectJoinen
dc.subjectLargest eigenvalueen
dc.titleOn the spectrum of the net Laplacian matrix of a signed graphen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85096496692-
dc.identifier.isi000611056700009-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85096496692-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn1220-3874en_US
dc.description.rankM23en_US
dc.relation.firstpage205en_US
dc.relation.lastpage213en_US
dc.relation.volume63en_US
dc.relation.issue2en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

9
checked on Jun 11, 2025

Page view(s)

15
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.