Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/709
Title: Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
Authors: Anđelić, Milica
Koledin, Tamara
Stanić, Zoran 
Affiliations: Numerical Mathematics and Optimization 
Keywords: Hamiltonian graph;Largest eigenvalue;Signless Laplacian matrix;Spectral inequalities
Issue Date: 2021
Rank: M22
Journal: Bulletin of the Brazilian Mathematical Society
Abstract: 
We give an upper bound on the largest eigenvalue of the signless Laplacian matrix of a Hamiltonian graph. This bound is applied to obtain sufficient spectral conditions for the non-existence of Hamiltonian cycles. Under certain additional assumptions we provide a polynomial time decisive spectral criterion for the Hamiltonicity of a given graph with sufficiently large minimum vertex degree.
URI: https://research.matf.bg.ac.rs/handle/123456789/709
ISSN: 16787544
DOI: 10.1007/s00574-020-00211-y
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

2
checked on Nov 8, 2024

Page view(s)

17
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.