Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/704
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stanić, Zoran | en_US |
dc.date.accessioned | 2022-08-15T15:00:09Z | - |
dc.date.available | 2022-08-15T15:00:09Z | - |
dc.date.issued | 2020-12-01 | - |
dc.identifier.issn | 00114642 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/704 | - |
dc.description.abstract | An eigenvalue of a real symmetric matrix is called main if there is an associated eigenvector not orthogonal to the all-1 vector j. Main eigenvalues are frequently considered in the framework of simple undirected graphs. In this study we generalize some results and then apply them to signed graphs. | en |
dc.relation.ispartof | Czechoslovak Mathematical Journal | en |
dc.subject | 05C22 | en |
dc.subject | 05C50 | en |
dc.subject | adjacency matrix | en |
dc.subject | Gram matrix | en |
dc.subject | Laplacian matrix | en |
dc.subject | main angle | en |
dc.subject | signed graph | en |
dc.title | Main Eigenvalues of Real Symmetric Matrices with Application to Signed Graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.21136/CMJ.2020.0147-19 | - |
dc.identifier.scopus | 2-s2.0-85084526117 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85084526117 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.firstpage | 1091 | en |
dc.relation.lastpage | 1102 | en |
dc.relation.volume | 70 | en |
dc.relation.issue | 4 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-4949-4203 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
8
checked on Nov 8, 2024
Page view(s)
9
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.