Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/703
DC FieldValueLanguage
dc.contributor.authorRowlinson, Peteren_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:09Z-
dc.date.available2022-08-15T15:00:09Z-
dc.date.issued2021-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/703-
dc.description.abstractFirst we investigate net-biregular signed graphs with spectrum of the form [ρ,μm,λl] where λ is non-main; such graphs are necessarily biregular with exactly two main eigenvalues. We provide two constructions of signed graphs with three eigenvalues, where the graphs that arise include net-biregular and net-regular signed graphs having spectrum [ρ,μ,λl], with λ non-main. Secondly we determine all the connected signed graphs with spectrum [ρ,μ2,λl](l≥2) where λ is non-main: these include a new infinite family of signed graphs which are neither net-regular nor net-biregular. Thus, in contrast to the situation for graphs, a signed graph with two main eigenvalues and one non-main eigenvalue is not necessarily net-biregular.en
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectAdjacency matrixen
dc.subjectBiregular graphen
dc.subjectBlock designen
dc.subjectGraph spectrumen
dc.subjectNet-biregular signed graphen
dc.subjectStar complementen
dc.titleSigned graphs with three eigenvalues: Biregularity and beyonden_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2021.03.018-
dc.identifier.scopus2-s2.0-85102744939-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85102744939-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.description.rankM21en_US
dc.relation.firstpage272en
dc.relation.lastpage295en
dc.relation.volume621en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 8, 2024

Page view(s)

14
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.