Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/703
DC FieldValueLanguage
dc.contributor.authorRowlinson, Peteren_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:09Z-
dc.date.available2022-08-15T15:00:09Z-
dc.date.issued2021-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/703-
dc.description.abstractFirst we investigate net-biregular signed graphs with spectrum of the form [ρ,μm,λl] where λ is non-main; such graphs are necessarily biregular with exactly two main eigenvalues. We provide two constructions of signed graphs with three eigenvalues, where the graphs that arise include net-biregular and net-regular signed graphs having spectrum [ρ,μ,λl], with λ non-main. Secondly we determine all the connected signed graphs with spectrum [ρ,μ2,λl](l≥2) where λ is non-main: these include a new infinite family of signed graphs which are neither net-regular nor net-biregular. Thus, in contrast to the situation for graphs, a signed graph with two main eigenvalues and one non-main eigenvalue is not necessarily net-biregular.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectAdjacency matrixen_US
dc.subjectBiregular graphen_US
dc.subjectBlock designen_US
dc.subjectGraph spectrumen_US
dc.subjectNet-biregular signed graphen_US
dc.subjectStar complementen_US
dc.titleSigned graphs with three eigenvalues: Biregularity and beyonden_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2021.03.018-
dc.identifier.scopus2-s2.0-85102744939-
dc.identifier.isi000641141600013-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85102744939-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0024-3795en_US
dc.description.rankM21en_US
dc.relation.firstpage272en_US
dc.relation.lastpage295en_US
dc.relation.volume621en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Mar 30, 2025

Page view(s)

14
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.