Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/702
DC FieldValueLanguage
dc.contributor.authorGreaves, Gary R.W.en_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:09Z-
dc.date.available2022-08-15T15:00:09Z-
dc.date.issued2022-
dc.identifier.issn10638539en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/702-
dc.description.abstractWe investigate properties of signed graphs that have few distinct eigenvalues together with a symmetric spectrum. Our main contribution is to determine all signed rectagraphs (triangle-free signed (Formula presented.) -graphs) with vertex degree at most 6 that have precisely two distinct eigenvalues (Formula presented.). Next, we consider to what extent induced subgraphs of signed graph with two distinct eigenvalues (Formula presented.) are determined by their spectra. Lastly, we classify signed rectagraphs that have a symmetric spectrum with three distinct eigenvalues and give a partial classification for signed (Formula presented.) -graphs with four distinct eigenvalues.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofJournal of Combinatorial Designsen_US
dc.subject(folded) cubeen_US
dc.subjectadjacency matrixen_US
dc.subjectbipartite doubleen_US
dc.subjectrectagraphen_US
dc.subjectsigned (0,2)-graphen_US
dc.subjectsymmetric spectrumen_US
dc.subjectweighing matrixen_US
dc.titleSigned (0,2)-graphs with few eigenvalues and a symmetric spectrumen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/jcd.21828-
dc.identifier.scopus2-s2.0-85124471280-
dc.identifier.isi000751757200001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85124471280-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn1063-8539en_US
dc.description.rankM22en_US
dc.relation.firstpage332en_US
dc.relation.lastpage353en_US
dc.relation.volume30en_US
dc.relation.issue5en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Mar 30, 2025

Page view(s)

15
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.