Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/698
DC FieldValueLanguage
dc.contributor.authorRamezani, Farzanehen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:08Z-
dc.date.available2022-08-15T15:00:08Z-
dc.date.issued2022-
dc.identifier.issn10186301en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/698-
dc.description.abstractThe net Laplacian matrix NG˙ of a signed graph G˙ is defined as NG˙=DG˙±-AG˙, where DG˙± and AG˙ denote the diagonal matrix of net-degrees and the adjacency matrix of G˙ , respectively. In this study, we give two upper bounds for the largest eigenvalue of NG˙, both expressed in terms related to vertex degrees. We also discuss their quality, provide certain comparisons and consider some particular cases.en
dc.relation.ispartofBulletin of the Iranian Mathematical Societyen
dc.subjectLargest eigenvalueen
dc.subjectNet Laplacian matrixen
dc.subjectSigned graphen
dc.subjectUpper bounden
dc.titleSome Upper Bounds for the Net Laplacian Index of a Signed Graphen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s41980-020-00514-2-
dc.identifier.scopus2-s2.0-85100777422-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85100777422-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage243en
dc.relation.lastpage250en
dc.relation.volume48en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 8, 2024

Page view(s)

15
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.