Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/695
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:07Z-
dc.date.available2022-08-15T15:00:07Z-
dc.date.issued2020-10-15-
dc.identifier.issn0166218Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/695-
dc.description.abstractThe net Laplacian matrix of a signed graph Ġ is defined to be NĠ=DĠ±−AĠ, where DĠ± and AĠ are the diagonal matrix of net-degrees and the adjacency matrix of Ġ, respectively. For a binary vector b, the pair (NĠ,b) is controllable if NĠ has no eigenvector orthogonal to b; we also say that Ġ is net Laplacian controllable for b. In this study we consider the net Laplacian controllability of joins of signed graphs. In particular, we establish all controllable pairs (NĠ,b), where Ġ is a signed threshold graph determined by a (0,1,−1)-generating sequence. This result contains all controllable pairs (LG,b), where LG is the Laplacian matrix of a graph G.en
dc.relation.ispartofDiscrete Applied Mathematicsen
dc.subjectControllabilityen
dc.subjectJoinen
dc.subjectNet Laplacian matrixen
dc.subjectSigned threshold graphen
dc.titleNet Laplacian controllability for joins of signed graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dam.2020.05.011-
dc.identifier.scopus2-s2.0-85088032099-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85088032099-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage197en
dc.relation.lastpage203en
dc.relation.volume285en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 15, 2024

Page view(s)

11
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.