Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/695
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:07Z-
dc.date.available2022-08-15T15:00:07Z-
dc.date.issued2020-10-15-
dc.identifier.issn0166218Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/695-
dc.description.abstractThe net Laplacian matrix of a signed graph Ġ is defined to be NĠ=DĠ±−AĠ, where DĠ± and AĠ are the diagonal matrix of net-degrees and the adjacency matrix of Ġ, respectively. For a binary vector b, the pair (NĠ,b) is controllable if NĠ has no eigenvector orthogonal to b; we also say that Ġ is net Laplacian controllable for b. In this study we consider the net Laplacian controllability of joins of signed graphs. In particular, we establish all controllable pairs (NĠ,b), where Ġ is a signed threshold graph determined by a (0,1,−1)-generating sequence. This result contains all controllable pairs (LG,b), where LG is the Laplacian matrix of a graph G.en_US
dc.publisherElsevieren_US
dc.relation.ispartofDiscrete Applied Mathematicsen_US
dc.subjectControllabilityen_US
dc.subjectJoinen_US
dc.subjectNet Laplacian matrixen_US
dc.subjectSigned threshold graphen_US
dc.titleNet Laplacian controllability for joins of signed graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dam.2020.05.011-
dc.identifier.scopus2-s2.0-85088032099-
dc.identifier.isi000563784700020-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85088032099-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0166-218Xen_US
dc.description.rankM22en_US
dc.relation.firstpage197en_US
dc.relation.lastpage203en_US
dc.relation.volume285en_US
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Mar 29, 2025

Page view(s)

13
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.