Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/694
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mulas, Raffaella | en_US |
dc.contributor.author | Stanić, Zoran | en_US |
dc.date.accessioned | 2022-08-15T15:00:07Z | - |
dc.date.available | 2022-08-15T15:00:07Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/694 | - |
dc.description.abstract | In this article, we investigate connected signed graphs which have a connected star complement for both -2-2 and 2 (i.e. simultaneously for the two eigenvalues), where -2-2 (resp. 2) is the least (largest) eigenvalue of the adjacency matrix of a signed graph under consideration. We determine all such star complements and their maximal extensions (again, relative to both eigenvalues). As an application, we provide a new proof of the result which identifies all signed graphs that have no eigenvalues other than -2-2 and 2. | en |
dc.relation.ispartof | Special Matrices | en |
dc.subject | maximal extension | en |
dc.subject | signed graph eigenvalue | en |
dc.subject | signed line graph | en |
dc.subject | star complement | en |
dc.title | Star complements for ±2 in signed graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1515/spma-2022-0161 | - |
dc.identifier.scopus | 2-s2.0-85125249583 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85125249583 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.firstpage | 258 | en |
dc.relation.lastpage | 266 | en |
dc.relation.volume | 10 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-4949-4203 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
5
checked on Nov 9, 2024
Page view(s)
18
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.