Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/694
DC FieldValueLanguage
dc.contributor.authorMulas, Raffaellaen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:07Z-
dc.date.available2022-08-15T15:00:07Z-
dc.date.issued2022-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/694-
dc.description.abstractIn this article, we investigate connected signed graphs which have a connected star complement for both -2-2 and 2 (i.e. simultaneously for the two eigenvalues), where -2-2 (resp. 2) is the least (largest) eigenvalue of the adjacency matrix of a signed graph under consideration. We determine all such star complements and their maximal extensions (again, relative to both eigenvalues). As an application, we provide a new proof of the result which identifies all signed graphs that have no eigenvalues other than -2-2 and 2.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofSpecial Matricesen_US
dc.subjectmaximal extensionen_US
dc.subjectsigned graph eigenvalueen_US
dc.subjectsigned line graphen_US
dc.subjectstar complementen_US
dc.titleStar complements for ±2 in signed graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/spma-2022-0161-
dc.identifier.scopus2-s2.0-85125249583-
dc.identifier.isi000755939600001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85125249583-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn2300-7451en_US
dc.description.rankM22en_US
dc.relation.firstpage258en_US
dc.relation.lastpage266en_US
dc.relation.volume10en_US
dc.relation.issue1en_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Aug 21, 2025

Page view(s)

19
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.