Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/694
DC FieldValueLanguage
dc.contributor.authorMulas, Raffaellaen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:07Z-
dc.date.available2022-08-15T15:00:07Z-
dc.date.issued2022-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/694-
dc.description.abstractIn this article, we investigate connected signed graphs which have a connected star complement for both -2-2 and 2 (i.e. simultaneously for the two eigenvalues), where -2-2 (resp. 2) is the least (largest) eigenvalue of the adjacency matrix of a signed graph under consideration. We determine all such star complements and their maximal extensions (again, relative to both eigenvalues). As an application, we provide a new proof of the result which identifies all signed graphs that have no eigenvalues other than -2-2 and 2.en
dc.relation.ispartofSpecial Matricesen
dc.subjectmaximal extensionen
dc.subjectsigned graph eigenvalueen
dc.subjectsigned line graphen
dc.subjectstar complementen
dc.titleStar complements for ±2 in signed graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/spma-2022-0161-
dc.identifier.scopus2-s2.0-85125249583-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85125249583-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage258en
dc.relation.lastpage266en
dc.relation.volume10en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 9, 2024

Page view(s)

18
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.