Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/693
DC FieldValueLanguage
dc.contributor.authorYang, Yuhongen_US
dc.contributor.authorWang, Jianfengen_US
dc.contributor.authorHuang, Qiongxiangen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:07Z-
dc.date.available2022-08-15T15:00:07Z-
dc.date.issued2022-
dc.identifier.issn09259899en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/693-
dc.description.abstractIn this paper we consider r-regular graphs G that admit the vertex set partition such that one of the induced subgraphs is the join of an s-vertex clique and a t-vertex co-clique and represents a star complement for an eigenvalue μ of G. The cases in which one of the parameters s, t is less than 2 or μ= r are already resolved. It is conjectured in Wang et al. (Linear Algebra Appl 579:302–319, 2019) that if s, t≥ 2 and μ≠ r, then μ= - 2 , t= 2 and G= (s+ 1) K2¯. For μ= - t we verify this conjecture to be true. We further study the case in which μ≠ - t and confirm the conjecture provided t2- 4 μ2t- 4 μ3= 0. For the remaining possibility we determine the structure of a putative counterexample and relate its existence to the existence of a particular 2-class block design. It occurs that the smallest counterexample would have 1265 vertices.en_US
dc.relation.ispartofJournal of Algebraic Combinatoricsen
dc.subjectBlock designen_US
dc.subjectRegular graphen_US
dc.subjectStar complementen_US
dc.subjectStar seten_US
dc.titleOn joins of a clique and a co-clique as star complements in regular graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10801-022-01115-4-
dc.identifier.scopus2-s2.0-85123251597-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85123251597-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

Page view(s)

13
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.