Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/682
DC FieldValueLanguage
dc.contributor.authorKRATICA, JOZEFen_US
dc.contributor.authorMATIC, DRAGANen_US
dc.contributor.authorFilipović, Vladimiren_US
dc.date.accessioned2022-08-14T09:50:09Z-
dc.date.available2022-08-14T09:50:09Z-
dc.date.issued2020-01-01-
dc.identifier.issn00416932-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/682-
dc.description.abstractWe consider the weakly convex and convex domination numbers for two classes of graphs: generalized Petersen graphs and flower snark graphs. For a given generalized Petersen graph GP(n, k), we prove that if k = 1 and n < 4 then both the weakly convex domination number wcon(GP(n, k)) and the convex domination number con(GP(n, k)) are equal to n. For k < 2 and n < 13, wcon(GP(n, k)) = con(GP(n, k)) = 2n, which is the order of GP(n, k). Special cases for smaller graphs are solved by the exact method. For a flower snark graph Jn, where n is odd and n < 5, we prove that wcon(Jn) = 2n and con(Jn) = 4n.en_US
dc.relation.ispartofRevista de la Union Matematica Argentinaen_US
dc.subjectconvex domination numberen_US
dc.subjectflower snark graphsen_US
dc.subjectgeneralized Petersen graphsen_US
dc.subjectgraph dominationen_US
dc.subjectnumberen_US
dc.subjectweakly convex dominationen_US
dc.titleWeakly Convex and Convex Domination Numbers for Generalized Petersen and Flower Snark Graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.33044/REVUMA.V61N2A16-
dc.identifier.scopus2-s2.0-85099635202-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85099635202-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.firstpage441en_US
dc.relation.lastpage455en_US
dc.relation.volume61en_US
dc.relation.issue2en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0002-5943-8037-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 18, 2024

Page view(s)

8
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.