Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/681
DC FieldValueLanguage
dc.contributor.authorGrbic, Milanaen_US
dc.contributor.authorKartelj, Aleksandaren_US
dc.contributor.authorJankovic, Savkaen_US
dc.contributor.authorMatic, Draganen_US
dc.contributor.authorFilipović, Vladimiren_US
dc.date.accessioned2022-08-14T09:49:37Z-
dc.date.available2022-08-14T09:49:37Z-
dc.date.issued2020-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/681-
dc.description.abstractIn a network, a k-plex represents a subset of n vertices where the degree of each vertex in the subnetwork induced by this subset is at least n-k. The maximum edge-weight k-plex partitioning problem is to find the k-plex partitioning in edge-weighted network, such that the sum of edge weights is maximal. The Max-EkPP has an important role in discovering new information in large biological networks. We propose a variable neighborhood search (VNS) algorithm for solving Max-EkPP. The VNS implements a local search based on the 1-swap first improvement strategy and the objective function that takes into account the degree of every vertex in each partition. The objective function favors feasible solutions and enables a gradual increase of the function's value, when moving from slightly infeasible to barely feasible solutions. Experimental computation is performed on real metabolic networks and other benchmark instances from the literature. Comparing to the previously proposed integer linear programming (ILP), VNS succeeds to find all known optimal solutions. For all other instances, the VNS either reaches previous best known solution or improves it. The proposed VNS is also tested on a large-scale dataset not considered up to now.en
dc.language.isoenen
dc.relation.ispartofIEEE/ACM transactions on computational biology and bioinformaticsen_US
dc.subject.meshComputational Biologyen
dc.subject.meshMetabolic Networks and Pathwaysen
dc.subject.meshModels, Biologicalen
dc.titleVariable Neighborhood Search for Partitioning Sparse Biological Networks into the Maximum Edge-Weighted k-Plexesen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCBB.2019.2898189-
dc.identifier.pmid30736005-
dc.identifier.scopus2-s2.0-85085999468-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85085999468-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.firstpage1822en_US
dc.relation.lastpage1831en_US
dc.relation.volume17en_US
dc.relation.issue5en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-9839-6039-
crisitem.author.orcid0000-0002-5943-8037-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Dec 20, 2024

Page view(s)

12
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.