Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/656
DC FieldValueLanguage
dc.contributor.authorAndrejić, Vladicaen_US
dc.date.accessioned2022-08-13T16:55:07Z-
dc.date.available2022-08-13T16:55:07Z-
dc.date.issued2018-01-01-
dc.identifier.issn03501302en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/656-
dc.description.abstractWe investigate Osserman-like conditions for Lorentzian curvature tensors that imply constant sectional curvature. It is known that Osserman (moreover zwei-stein) Lorentzian manifolds have constant sectional curvature. We prove that some generalizations of the Rakic duality principle (Lorentzian totally Jacobi-dual or four-dimensional Lorentzian Jacobi-dual) imply constant sectional curvature. Moreover, any four-dimensional Jacobi-dual algebraic curvature tensor such that the Jacobi operator for some nonnull vector is diagonalizable, is Osserman. Additionally, any Lorentzian algebraic curvature tensor such that the reduced Jacobi operator for all nonnull vectors has a single eigenvalue has a constant sectional curvature.en
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.subjectDuality principleen
dc.subjectLorentzian spaceen
dc.subjectOsserman manifolden
dc.titleOn Lorentzian spaces of constant sectional curvatureen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM1817007A-
dc.identifier.scopus2-s2.0-85047019456-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85047019456-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage7en
dc.relation.lastpage15en
dc.relation.volume103en
dc.relation.issue117en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-3288-1845-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 8, 2024

Page view(s)

16
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.