Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/653
DC FieldValueLanguage
dc.contributor.authorAndrejić, Vladicaen_US
dc.date.accessioned2022-08-13T16:55:06Z-
dc.date.available2022-08-13T16:55:06Z-
dc.date.issued2022-
dc.identifier.issn03930440en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/653-
dc.description.abstractWe give the necessary and sufficient conditions for Jacobi operators that determine an algebraic curvature tensor. This motivates us to introduce the new concept of Jacobi-proportional Riemannian tensors, whose special case is the Rakić duality principle. We prove that all known Osserman tensors (both two-root Osserman and Clifford) are Jacobi-proportional. After the results given by Nikolayevsky, it is known that possible counterexamples of the Osserman conjecture can occur in dimension 16 only, while the reduced Jacobi operator has an eigenvalue of multiplicity 7 or 8. We prove that Jacobi-proportional Osserman tensors that do not satisfy the Osserman conjecture are 2-root with multiplicities 8 and 7, or 3-root with multiplicities 7, 7, and 1.en
dc.relation.ispartofJournal of Geometry and Physicsen
dc.subjectDuality principleen
dc.subjectJacobi operatoren
dc.subjectOsserman conjectureen
dc.subjectOsserman manifolden
dc.titleThe proportionality principle for Osserman manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2022.104516-
dc.identifier.scopus2-s2.0-85127308167-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85127308167-
dc.contributor.affiliationGeometryen_US
dc.relation.volume176en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-3288-1845-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 14, 2024

Page view(s)

11
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.