Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/651
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Andrejić, Vladica | en_US |
dc.contributor.author | Lukić, Katarina | en_US |
dc.date.accessioned | 2022-08-13T16:55:06Z | - |
dc.date.available | 2022-08-13T16:55:06Z | - |
dc.date.issued | 2019-01-01 | - |
dc.identifier.issn | 03545180 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/651 | - |
dc.description.abstract | We consider pseudo-Riemannian generalizations of Osserman, Clifford, and the duality principle properties for algebraic curvature tensors and investigate relations between them. We introduce quasi-Clifford curvature tensors using a generalized Clifford family and show that they are Osserman. This allows us to discover an Osserman curvature tensor that does not satisfy the duality principle. We give some necessary and some sufficient conditions for the total duality principle. | en |
dc.relation.ispartof | Filomat | en |
dc.subject | Clifford family | en |
dc.subject | Duality principle | en |
dc.subject | Osserman manifold | en |
dc.title | On quasi-Clifford Osserman curvature tensors | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/FIL1904241A | - |
dc.identifier.scopus | 2-s2.0-85078230758 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85078230758 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 1241 | en |
dc.relation.lastpage | 1247 | en |
dc.relation.volume | 33 | en |
dc.relation.issue | 4 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0003-3288-1845 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
3
checked on Nov 15, 2024
Page view(s)
14
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.