Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/645
DC FieldValueLanguage
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.contributor.authorJojić, Duškoen_US
dc.contributor.authorTimotijević, Marinkoen_US
dc.contributor.authorVrećica, Siniša T.en_US
dc.contributor.authorŽivaljević, Rade T.en_US
dc.date.accessioned2022-08-13T16:38:21Z-
dc.date.available2022-08-13T16:38:21Z-
dc.date.issued2020-01-01-
dc.identifier.issn01956698-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/645-
dc.description.abstractThe partition number π(K) of a simplicial complex K⊆2[n] is the minimum integer k such that for each partition A1⊎…⊎Ak=[n] of [n] at least one of the sets Ai is in K. A complex K is r-unavoidable if π(K)≤r. Simplicial complexes with small π(K) are important for applications of the “constraint method” (Blagojević et al., 2014) and serve as an input for the “index inequalities” (Jojić et al., 2018), such as (1.1). We introduce a “threshold characteristic” ρ(K) of K (Section 3) and define a fractional (linear programming) relaxation of π(K) (Section 4), which allows us to systematically generate interesting examples of r-unavoidable complexes and pave the way for new results of Van Kampen–Flores–Tverberg type.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEuropean Journal of Combinatoricsen_US
dc.titleCombinatorics of unavoidable complexesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ejc.2019.103004-
dc.identifier.scopus2-s2.0-85071339391-
dc.identifier.isi000491631600006-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85071339391-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0195-6698en_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. 103004en_US
dc.relation.volume83en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Jul 22, 2025

Page view(s)

7
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.