Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/642
DC FieldValueLanguage
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.date.accessioned2022-08-13T16:36:32Z-
dc.date.available2022-08-13T16:36:32Z-
dc.date.issued2016-01-01-
dc.identifier.issn03501302-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/642-
dc.description.abstractDold's theorem gives sufficient conditions for proving that there is no G-equivariant mapping between two spaces. We prove a generalization of Dold's theorem, which requires triviality of homology with some coefficients, up to dimension n, instead of n-connectedness. Then we apply it to a special case of Knaster's famous problem, and obtain a new proof of a result of C.T. Yang, which is much shorter and simpler than previous proofs. Also, we obtain a positive answer to some other cases of Knaster's problem, and improve a result of V.V. Makeev, by weakening the conditions.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički institut SANUen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectCohomological indexen_US
dc.subjectConfiguration spaceen_US
dc.subjectDold's theoremen_US
dc.subjectG-equivariant mappingen_US
dc.subjectKnaster's problemen_US
dc.subjectStiefel manifolden_US
dc.titleOn Knaster's problemen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM151030032J-
dc.identifier.scopus2-s2.0-84971472973-
dc.identifier.isi000398277700004-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84971472973-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0350-1320en_US
dc.description.rankM23en_US
dc.relation.firstpage43en_US
dc.relation.lastpage49en_US
dc.relation.volume99en_US
dc.relation.issue113en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
0350-13021500032J.pdf133.4 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

25
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons