Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/641
DC FieldValueLanguage
dc.contributor.authorBayer, Margareten_US
dc.contributor.authorGoeckner, Benneten_US
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.date.accessioned2022-08-13T16:35:42Z-
dc.date.available2022-08-13T16:35:42Z-
dc.date.issued2020-10-01-
dc.identifier.issn00255793en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/641-
dc.description.abstractThe matching complex of a graph is the simplicial complex whose vertex set is the set of edges of the graph with a face for each independent set of edges. In this paper, we completely characterize the pairs (graph, matching complex) for which the matching complex is a homology manifold, with or without boundary. Except in dimension two, all of these manifolds are spheres or balls.en_US
dc.language.isoenen_US
dc.publisherLondon : London Mathematical Societyen_US
dc.relation.ispartofMathematikaen_US
dc.subject05C70 (primary)en_US
dc.subject05E45en_US
dc.subject57M15 (secondary)en_US
dc.titleManifold Matching Complexesen_US
dc.typeArticleen_US
dc.identifier.doi10.1112/mtk.12049-
dc.identifier.scopus2-s2.0-85092198298-
dc.identifier.isi000588617800007-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85092198298-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0025-5793en_US
dc.description.rankM22en_US
dc.relation.firstpage973en_US
dc.relation.lastpage1002en_US
dc.relation.volume66en_US
dc.relation.issue4en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 9, 2024

Page view(s)

12
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.