Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/640
DC FieldValueLanguage
dc.contributor.authorCamacho, Charlesen_US
dc.contributor.authorFernández-Merchant, Silviaen_US
dc.contributor.authorJelić Milutinović, Marijaen_US
dc.contributor.authorKirsch, Rachelen_US
dc.contributor.authorKleist, Lindaen_US
dc.contributor.authorMatson, Elizabeth B.en_US
dc.contributor.authorWhite, Jenniferen_US
dc.date.accessioned2022-08-13T16:35:41Z-
dc.date.available2022-08-13T16:35:41Z-
dc.date.issued2022-
dc.identifier.issn03649024en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/640-
dc.description.abstractA tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. We present upper and lower bounds on the minimum number of crossings in tripartite-circle drawings of (Formula presented.) and the exact value for (Formula presented.). In contrast to 1- and 2-circle drawings, which may attain the Harary–Hill bound, our results imply that balanced restricted 3-circle drawings of the complete graph are not optimal.en_US
dc.relation.ispartofJournal of Graph Theoryen_US
dc.subject3-circle drawingen_US
dc.subjectcircle drawingen_US
dc.subjectcomplete tripartite graphen_US
dc.subjectcrossing numberen_US
dc.subjectHarary–Hill bounden_US
dc.titleBounding the tripartite-circle crossing number of complete tripartite graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/jgt.22763-
dc.identifier.scopus2-s2.0-85113459708-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85113459708-
dc.contributor.affiliationTopologyen_US
dc.relation.issn10970118en_US
dc.description.rankM22en_US
dc.relation.firstpage5en_US
dc.relation.lastpage27en_US
dc.relation.volume100en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-6578-3224-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

19
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.