Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/636
DC FieldValueLanguage
dc.contributor.authorStojadinović, Tanjaen_US
dc.date.accessioned2022-08-13T16:25:59Z-
dc.date.available2022-08-13T16:25:59Z-
dc.date.issued2013-03-01-
dc.identifier.issn00114642en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/636-
dc.description.abstractA multiplicative functional on a graded connected Hopf algebra is called the character. Every character decomposes uniquely as a product of an even character and an odd character. We apply the character theory of combinatorial Hopf algebras to the Hopf algebra of simple graphs. We derive explicit formulas for the canonical characters on simple graphs in terms of coefficients of the chromatic symmetric function of a graph and of canonical characters on quasi-symmetric functions. These formulas and properties of characters are used to derive some interesting numerical identities relating multinomial and central binomial coefficients. © 2013 Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic.en
dc.relation.ispartofCzechoslovak Mathematical Journalen
dc.subjectcharacteren
dc.subjectHopf algebraen
dc.subjectquasi-symmetric functionen
dc.subjectsimple graphen
dc.titleCanonical characters on simple graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10587-013-0007-3-
dc.identifier.scopus2-s2.0-84875437870-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84875437870-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage107en
dc.relation.lastpage113en
dc.relation.volume63en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-5948-7912-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

13
checked on Nov 13, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.