Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/634
DC FieldValueLanguage
dc.contributor.authorGrujić, Vladimiren_US
dc.contributor.authorStojadinović, Tanjaen_US
dc.date.accessioned2022-08-13T16:20:10Z-
dc.date.available2022-08-13T16:20:10Z-
dc.date.issued2006-01-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/634-
dc.description.abstractA new algebraic formula for the numbers of faces of nestohedra is obtained. The enumerator function F(PB) of positive lattice points in interiors of maximal cones of the normal fan of the nestohedron PBassociated to a building set B is described as a morphism from the certain combinatorial Hopf algebra of building sets to quasisymmetric functions. We define the q-analog Fq(PB) and derive its determining recurrence relations. The f-polynomial of the nestohedron PBappears as the principal specialization of the quasisymmetric function Fq(PB).en
dc.subjectCombinatorial Hopf algebraen
dc.subjectF-polynomialen
dc.subjectNestohedraen
dc.titleCounting faces of nestohedraen_US
dc.typeConference Paperen_US
dc.relation.publication29th international conference on Formal Power Series and Algebraic Combinatorics - FPSAC 2017en_US
dc.identifier.scopus2-s2.0-85064227553-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85064227553-
dc.contributor.affiliationTopologyen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeConference Paper-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-2306-2891-
crisitem.author.orcid0000-0002-5948-7912-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 24, 2024

Page view(s)

23
checked on Dec 25, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.