Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/633
DC FieldValueLanguage
dc.contributor.authorGrujić, Vladimiren_US
dc.contributor.authorWelker, Volkmaren_US
dc.date.accessioned2022-08-13T16:20:10Z-
dc.date.available2022-08-13T16:20:10Z-
dc.date.issued2015-02-01-
dc.identifier.issn00269255en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/633-
dc.description.abstractWe study for a finite simplicial complex K and a CW-pair (X,A) the associated CW-complex (Formula presented.), known as the polyhedral product or generalized moment angle-complex. We apply discrete Morse theory to a particular CW-structure on the n-sphere moment-angle complexes (Formula presented.). For the class of simplicial complexes with vertex-decomposable duals, we show that the associated n-sphere moment-angle complexes have the homotopy type of wedges of spheres. As a corollary we show that a sufficiently high suspension of any restriction of a simplicial complex with the vertex-decomposable dual is homotopy equivalent to a wedge of spheres.en
dc.relation.ispartofMonatshefte fur Mathematiken
dc.subjectCoordinate subspace arrangementen
dc.subjectDiscrete Morse theoryen
dc.subjectn-Sphere moment-angle complexen
dc.subjectSimplicial complexen
dc.titleMoment-angle complexes of pairs (D<sup>n</sup>,S<sup>n-1</sup>) and Simplicial complexes with vertex-decomposable dualsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00605-014-0698-z-
dc.identifier.scopus2-s2.0-84922076517-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84922076517-
dc.contributor.affiliationTopologyen_US
dc.relation.firstpage255en
dc.relation.lastpage273en
dc.relation.volume176en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-2306-2891-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

12
checked on Nov 11, 2024

Page view(s)

9
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.