Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/629
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baralić, D. B. | en_US |
dc.contributor.author | Grujić, Vladimir | en_US |
dc.date.accessioned | 2022-08-13T16:20:09Z | - |
dc.date.available | 2022-08-13T16:20:09Z | - |
dc.date.issued | 2016-01-01 | - |
dc.identifier.issn | 10645616 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/629 | - |
dc.description.abstract | We construct small covers and quasitoric manifolds over n-dimensional simple polytopes which allow proper colourings of facets with n colours. We calculate the Stiefel-Whitney classes of these manifolds as obstructions to immersions and embeddings into Euclidean spaces. The largest dimension required for embedding is achieved in the case n is a power of two. | en |
dc.relation.ispartof | Sbornik Mathematics | en |
dc.subject | Colourings | en |
dc.subject | Embeddings | en |
dc.subject | Quasitoric manifolds | en |
dc.subject | Simple polytopes | en |
dc.subject | Stiefel-Whitney classes | en |
dc.title | Quasitoric manifolds and small covers over properly coloured polytopes: Immersions and embeddings | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1070/SM8401 | - |
dc.identifier.scopus | 2-s2.0-84976412718 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84976412718 | - |
dc.contributor.affiliation | Topology | en_US |
dc.relation.firstpage | 479 | en |
dc.relation.lastpage | 489 | en |
dc.relation.volume | 207 | en |
dc.relation.issue | 4 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Topology | - |
crisitem.author.orcid | 0000-0002-2306-2891 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 8, 2024
Page view(s)
7
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.