Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/628
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Grujić, Vladimir | en_US |
dc.date.accessioned | 2022-08-13T16:20:09Z | - |
dc.date.available | 2022-08-13T16:20:09Z | - |
dc.date.issued | 2011-01-01 | - |
dc.identifier.issn | 14514966 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/628 | - |
dc.description.abstract | In this article we present main notions and ideas of Morse theory in two dimensions, adjusted to school teachers and their talented students. We count numbers of critical points of different types and obtain interesting results about plane curves, mountainous landscapes and planets. We also derive the Euler formula for polyhedra. | en |
dc.relation.ispartof | Teaching of Mathematics | en_US |
dc.subject | Critical point | en |
dc.subject | Morse function | en |
dc.subject | Polyhedron | en |
dc.title | Three manifestations of Morse theory in two dimensions | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 2-s2.0-85075047023 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85075047023 | - |
dc.contributor.affiliation | Topology | en_US |
dc.relation.firstpage | 137 | en_US |
dc.relation.lastpage | 145 | en_US |
dc.relation.volume | 14 | en_US |
dc.relation.issue | 2 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Topology | - |
crisitem.author.orcid | 0000-0002-2306-2891 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
2
checked on Nov 8, 2024
Page view(s)
6
checked on Nov 14, 2024
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.