Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/628
DC FieldValueLanguage
dc.contributor.authorGrujić, Vladimiren_US
dc.date.accessioned2022-08-13T16:20:09Z-
dc.date.available2022-08-13T16:20:09Z-
dc.date.issued2011-01-01-
dc.identifier.issn14514966en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/628-
dc.description.abstractIn this article we present main notions and ideas of Morse theory in two dimensions, adjusted to school teachers and their talented students. We count numbers of critical points of different types and obtain interesting results about plane curves, mountainous landscapes and planets. We also derive the Euler formula for polyhedra.en
dc.relation.ispartofTeaching of Mathematicsen_US
dc.subjectCritical pointen
dc.subjectMorse functionen
dc.subjectPolyhedronen
dc.titleThree manifestations of Morse theory in two dimensionsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85075047023-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85075047023-
dc.contributor.affiliationTopologyen_US
dc.relation.firstpage137en_US
dc.relation.lastpage145en_US
dc.relation.volume14en_US
dc.relation.issue2en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-2306-2891-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 8, 2024

Page view(s)

6
checked on Nov 14, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.