Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/627
DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen_US
dc.contributor.authorGrujić, Vladimiren_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2022-08-13T16:20:09Z-
dc.date.available2022-08-13T16:20:09Z-
dc.date.issued2005-02-28-
dc.identifier.issn01668641en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/627-
dc.description.abstractWe study the combinatorics and topology of general arrangements of sub-spaces of the form D + SP n-d (X) in symmetric products SP n (X) where D ∈ SP d (X). Symmetric products SP m (X) : = X m /S m , also known as the spaces of effective "divisors" of order m, together with their companion spaces of divisors/particles, have been studied from many points of view in numerous papers, see [P. Blagojević et al., in: B. Dragović, B. Sazdović (Eds.) Summer School in Modern Mathematical Physics, 2004, math.AT/0408417; S. Kallel, Trans. Amer. Math. Soc. 350 (1998), 1350] for the references. In this paper we approach them from the point of view of geometric combinatorics. Using the topological technique of diagrams of spaces along the lines of [V. Welker et al., J. Reine Angew. Math. 509 (1999), 117; G.M. Ziegler, R.T. Živaljević, Math. Ann. 295 (1993) 527] we calculate the homology of the union and the complement of these arrangements. As an application we include a computation of the homology of the homotopy end space of the open manifold SP n (M g,k ), where M g,k is a Riemann surface of genus g punctured at k points, a problem which was originally motivated by the study of commutative (m + k, m)-groups [K. Trenčevski, D. Dimovski, J. Algebra 240 (2001) 338]. © 2004 Elsevier B.V. All rights reserved.en
dc.relation.ispartofTopology and its Applicationsen
dc.subjectDiagrams of spacesen
dc.subjectEnd spacesen
dc.subjectHomotopy colimitsen
dc.subjectSymmetric productsen
dc.titleArrangements of symmetric products of spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.topol.2004.09.001-
dc.identifier.scopus2-s2.0-13644278906-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/13644278906-
dc.contributor.affiliationTopologyen_US
dc.relation.firstpage213en
dc.relation.lastpage232en
dc.relation.volume148en
dc.relation.issue1-3en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-2306-2891-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 18, 2024

Page view(s)

12
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.