Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/627
DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen_US
dc.contributor.authorGrujić, Vladimiren_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2022-08-13T16:20:09Z-
dc.date.available2022-08-13T16:20:09Z-
dc.date.issued2005-02-28-
dc.identifier.issn01668641en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/627-
dc.description.abstractWe study the combinatorics and topology of general arrangements of sub-spaces of the form D + SP n-d (X) in symmetric products SP n (X) where D ∈ SP d (X). Symmetric products SP m (X) : = X m /S m , also known as the spaces of effective "divisors" of order m, together with their companion spaces of divisors/particles, have been studied from many points of view in numerous papers, see [P. Blagojević et al., in: B. Dragović, B. Sazdović (Eds.) Summer School in Modern Mathematical Physics, 2004, math.AT/0408417; S. Kallel, Trans. Amer. Math. Soc. 350 (1998), 1350] for the references. In this paper we approach them from the point of view of geometric combinatorics. Using the topological technique of diagrams of spaces along the lines of [V. Welker et al., J. Reine Angew. Math. 509 (1999), 117; G.M. Ziegler, R.T. Živaljević, Math. Ann. 295 (1993) 527] we calculate the homology of the union and the complement of these arrangements. As an application we include a computation of the homology of the homotopy end space of the open manifold SP n (M g,k ), where M g,k is a Riemann surface of genus g punctured at k points, a problem which was originally motivated by the study of commutative (m + k, m)-groups [K. Trenčevski, D. Dimovski, J. Algebra 240 (2001) 338]. © 2004 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofTopology and its Applicationsen_US
dc.subjectDiagrams of spacesen_US
dc.subjectEnd spacesen_US
dc.subjectHomotopy colimitsen_US
dc.subjectSymmetric productsen_US
dc.titleArrangements of symmetric products of spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.topol.2004.09.001-
dc.identifier.scopus2-s2.0-13644278906-
dc.identifier.isi000227235200016-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/13644278906-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0166-8641en_US
dc.description.rankM22en_US
dc.relation.firstpage213en_US
dc.relation.lastpage232en_US
dc.relation.volume148en_US
dc.relation.issue1-3en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-2306-2891-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 17, 2025

Page view(s)

12
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.