Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/626
DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen_US
dc.contributor.authorGrujić, Vladimiren_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2022-08-13T16:20:09Z-
dc.date.available2022-08-13T16:20:09Z-
dc.date.issued2003-01-01-
dc.identifier.issn00212172en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/626-
dc.description.abstractWe study some of the combinatorial structures related to the signature of G-symmetric products of (open) surfaces SPGm(M) = M m/G where G ⊂ Sm. The attention is focused on the question, what information about a surface M can be recovered from a symmetric product SPn(M). The problem is motivated in part by the study of locally Euclidean topological commutative (m + k, m)-groups, [16]. Emphasizing a combinatorial point of view we express the signature Sign(SPGm(M)) in terms of the cycle index Z(G; x̄) of G, a polynomial which originally appeared in Pólya enumeration theory of graphs, trees, chemical structures etc. The computations are used to show that there exist punctured Riemann surfaces Mg,k, Mg,k, such that the manifolds SPm(Mg,k) and SPm(Mg,k) are often not homeomorphic, although they always have the same homotopy type provided 2g + k = 2g + k and k, k ≥ 1.en
dc.relation.ispartofIsrael Journal of Mathematicsen_US
dc.titleSymmetric products of surfaces and the cycle indexen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF02783419-
dc.identifier.scopus2-s2.0-0442307394-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0442307394-
dc.contributor.affiliationTopologyen_US
dc.relation.firstpage61en_US
dc.relation.lastpage72en_US
dc.relation.volume138en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-2306-2891-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 20, 2024

Page view(s)

7
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.