Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/625
DC FieldValueLanguage
dc.contributor.authorGrujić, Vladimiren_US
dc.date.accessioned2022-08-13T16:20:08Z-
dc.date.available2022-08-13T16:20:08Z-
dc.date.issued2017-01-01-
dc.identifier.issn08954801en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/625-
dc.description.abstractFor a generalized permutohedron Q the enumerator F(Q) of positive lattice points in interiors of maximal cones of the normal fan ΣQ is a quasisymmetric function. We describe this function for the class of nestohedra as a Hopf algebra morphism from a combinatorial Hopf algebra of building sets. For the class of graph-associahedra, the corresponding quasisymmetric function is a new isomorphism invariant of graphs. The obtained invariant is quite natural as it is the generating function of ordered colorings of graphs and it satisfies the recurrence relation with respect to deletions of vertices.en_US
dc.language.isoenen_US
dc.publisherPhiladelphia : SIAM Publicationsen_US
dc.relation.ispartofSIAM Journal on Discrete Mathematicsen_US
dc.subjectCombinatorial Hopf algebraen_US
dc.subjectGraph-associahedronen_US
dc.subjectNestohedronen_US
dc.subjectP-partitionen_US
dc.subjectQuasisymmetric functionen_US
dc.titleQuasisymmetric functions for nestohedraen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/16M105914X-
dc.identifier.scopus2-s2.0-85040351861-
dc.identifier.isi000418674000014-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85040351861-
dc.contributor.affiliationTopologyen_US
dc.relation.issn0895-4801en_US
dc.description.rankM22en_US
dc.relation.firstpage2570en_US
dc.relation.lastpage2585en_US
dc.relation.volume31en_US
dc.relation.issue4en_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-2306-2891-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Aug 21, 2025

Page view(s)

7
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.