Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/620
DC FieldValueLanguage
dc.contributor.authorGolubović, Jelenaen_US
dc.contributor.authorProtić, Anaen_US
dc.contributor.authorZečević, Miraen_US
dc.contributor.authorOtašević, Biljanaen_US
dc.contributor.authorMikić, Marijaen_US
dc.contributor.authorŽivanović, Ljiljanaen_US
dc.date.accessioned2022-08-13T16:07:52Z-
dc.date.available2022-08-13T16:07:52Z-
dc.date.issued2012-
dc.identifier.issn00399140en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/620-
dc.description.abstractArtificial neural network (ANN) is a learning system based on a computational technique which can simulate the neurological processing ability of the human brain. It was employed for building of the quantitative structure-retention relationships (QSRRs) model of antifungal agents-imidazoles or triazoles by structure. Computed molecular descriptors together with the percentage of acetonitrile in mobile phase (v/v) and buffer pH, being the most influential HPLC factors, were used as network inputs, giving the retention factor as model output. The multilayer perceptron network with a 9-5-1 topology was trained by using the back propagation algorithm. Good correlation between experimentally obtained data and ones predicted by using QSRR-ANN on previously unseen data sets indicates good predictive ability of the model.en
dc.language.isoenen
dc.relation.ispartofTalantaen_US
dc.subjectAntifungal agentsen
dc.subjectArtificial neural networksen
dc.subjectAzolesen
dc.subjectHPLCen
dc.subjectQSRRen
dc.subject.meshAntifungal Agentsen
dc.subject.meshAzolesen
dc.subject.meshChromatography, High Pressure Liquiden
dc.subject.meshChromatography, Reverse-Phaseen
dc.titleQuantitative structure-retention relationships of azole antifungal agents in reversed-phase high performance liquid chromatographyen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.talanta.2012.07.071-
dc.identifier.pmid23141345-
dc.identifier.scopus2-s2.0-84869079263-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84869079263-
dc.relation.firstpage329en_US
dc.relation.lastpage337en_US
dc.relation.volume100en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptDifferential Equations-
crisitem.author.orcid0000-0003-2498-1467-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 8, 2024

Page view(s)

14
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.