Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/620
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Golubović, Jelena | en_US |
dc.contributor.author | Protić, Ana | en_US |
dc.contributor.author | Zečević, Mira | en_US |
dc.contributor.author | Otašević, Biljana | en_US |
dc.contributor.author | Mikić, Marija | en_US |
dc.contributor.author | Živanović, Ljiljana | en_US |
dc.date.accessioned | 2022-08-13T16:07:52Z | - |
dc.date.available | 2022-08-13T16:07:52Z | - |
dc.date.issued | 2012 | - |
dc.identifier.issn | 00399140 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/620 | - |
dc.description.abstract | Artificial neural network (ANN) is a learning system based on a computational technique which can simulate the neurological processing ability of the human brain. It was employed for building of the quantitative structure-retention relationships (QSRRs) model of antifungal agents-imidazoles or triazoles by structure. Computed molecular descriptors together with the percentage of acetonitrile in mobile phase (v/v) and buffer pH, being the most influential HPLC factors, were used as network inputs, giving the retention factor as model output. The multilayer perceptron network with a 9-5-1 topology was trained by using the back propagation algorithm. Good correlation between experimentally obtained data and ones predicted by using QSRR-ANN on previously unseen data sets indicates good predictive ability of the model. | en |
dc.language.iso | en | en |
dc.relation.ispartof | Talanta | en_US |
dc.subject | Antifungal agents | en |
dc.subject | Artificial neural networks | en |
dc.subject | Azoles | en |
dc.subject | HPLC | en |
dc.subject | QSRR | en |
dc.subject.mesh | Antifungal Agents | en |
dc.subject.mesh | Azoles | en |
dc.subject.mesh | Chromatography, High Pressure Liquid | en |
dc.subject.mesh | Chromatography, Reverse-Phase | en |
dc.title | Quantitative structure-retention relationships of azole antifungal agents in reversed-phase high performance liquid chromatography | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.talanta.2012.07.071 | - |
dc.identifier.pmid | 23141345 | - |
dc.identifier.scopus | 2-s2.0-84869079263 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84869079263 | - |
dc.relation.firstpage | 329 | en_US |
dc.relation.lastpage | 337 | en_US |
dc.relation.volume | 100 | en_US |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Differential Equations | - |
crisitem.author.orcid | 0000-0003-2498-1467 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.