Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/618
DC FieldValueLanguage
dc.contributor.authorVukmirović, Srđanen_US
dc.contributor.authorBabić, Marijanaen_US
dc.contributor.authorDekić, Andrijanaen_US
dc.date.accessioned2022-08-13T15:57:34Z-
dc.date.available2022-08-13T15:57:34Z-
dc.date.issued2019-01-01-
dc.identifier.issn00416932en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/618-
dc.description.abstractThe only 4-dimensional non-compact rank one symmetric spaces are CH2 and RH4. By the classical results of Heintze, one can model these spaces by real solvable Lie groups with left invariant metrics. In this paper we classify all possible left invariant Hermitian structures on these Lie groups, i.e., left invariant Riemannian metrics and the corresponding Hermitian complex structures. We show that each metric from the classification on CH2 admits at least four Hermitian complex structures. One class of metrics on CH2 and all the metrics on RH4 admit 2-spheres of Hermitian complex structures. The standard metric of CH2 is the only Einstein metric from the classification, and also the only metric that admits Kähler structure, while on RH4 all the metrics are Einstein. Finally, we examine the geometry of these Lie groups: curvature properties, self-duality, and holonomy.en
dc.relation.ispartofRevista de la Union Matematica Argentinaen
dc.subjectComplex hyperbolic planeen
dc.subjectHermitian complex structuresen
dc.subjectLeft invariant metricsen
dc.subjectNon-compact rank one symmetric spacesen
dc.titleClassification of left invariant Hermitian structures on 4-dimensional non-compact rank one symmetric spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.33044/revuma.v60n2a04-
dc.identifier.scopus2-s2.0-85077322484-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85077322484-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage343en
dc.relation.lastpage358en
dc.relation.volume60en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 14, 2024

Page view(s)

10
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.