Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/617
DC FieldValueLanguage
dc.contributor.authorBlažlć, Novicaen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2022-08-13T15:57:34Z-
dc.date.available2022-08-13T15:57:34Z-
dc.date.issued2010-12-01-
dc.identifier.issn00357596en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/617-
dc.description.abstractIn this paper we classify four-dimensional real Lie algebras g admitting an integrable, left invariant, para-hypercomplex structure. The equivalence classes of compatible structures are classified. The metric of split signature (2; 2), canonically determined by the para-hypercomplex structure, is very convenient in understanding the structure of a. Moreover, these structures provide many examples of left invariant metrics of anti-self-dual metric of split signature. Conformal geometry and the curvature of the canonical metric on the corresponding Lie groups are also discussed. For example, the holonomy algebras of this canonical metrics are determined. © 2010 Rocky Mountain Mathematics Consortium.en
dc.relation.ispartofRocky Mountain Journal of Mathematicsen
dc.subjectHyper-complex structureen
dc.subjectNeutral signatureen
dc.subjectPara-hypercomplex (complex product,hypersympectic) structureen
dc.subjectSelf-dual metricen
dc.titleFour-dimensional lie algebras with a para-hypercomplex structureen_US
dc.typeArticleen_US
dc.identifier.doi10.1216/RMJ-2010-40-5-1391-
dc.identifier.scopus2-s2.0-79551612677-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/79551612677-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage1391en
dc.relation.lastpage1439en
dc.relation.volume40en
dc.relation.issue5en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 9, 2024

Page view(s)

15
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.