Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/615
DC FieldValueLanguage
dc.contributor.authorBlažić, Novicaen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2022-08-13T15:57:33Z-
dc.date.available2022-08-13T15:57:33Z-
dc.date.issued2002-02-01-
dc.identifier.issn03930440en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/615-
dc.description.abstractTrautman has constructed natural self-dual connections on the Hopf bundles over complex and quaternionic projective spaces ℂPn and ℍPn; the associated connections are SU(n + 1) and Sp(n + 1) invariant. Trautman wondered if these connections could be generalized to the case of the corresponding projective spaces defined by indefinite metrics. In this note, we extend the work of Trautman in two different directions. We first define self-dual connections on the Hopf bundles over the projective spaces ℂP(p,q) and ℍP(p,q) which are U(p,q + 1) and Sp(p,q + 1) invariant. We also define self-dual connections over the Hopf bundles associated with the para-complex and para-quarternionic projective spaces ℂP(p,q) and ℍP(p,q). Finally, the topology of these projective spaces is investigated. © 2002 Elsevier Science B.V. All rights reserved.en
dc.relation.ispartofJournal of Geometry and Physicsen
dc.subjectIndefinite metricen
dc.subjectPrinciple bundleen
dc.subjectProjective spaceen
dc.subjectSelf-dual connectionen
dc.subjectYang-Mills equationen
dc.titleSolutions of Yang-Mills equations on generalized Hopf bundlesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0393-0440(01)00046-8-
dc.identifier.scopus2-s2.0-10644252746-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/10644252746-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage57en
dc.relation.lastpage64en
dc.relation.volume41en
dc.relation.issue1-2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 8, 2024

Page view(s)

8
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.