Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/614
DC FieldValueLanguage
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2022-08-13T15:57:33Z-
dc.date.available2022-08-13T15:57:33Z-
dc.date.issued2015-08-01-
dc.identifier.issn03930440en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/614-
dc.description.abstractIn this study, we investigate the Riemannian and Lorentzian geometry of left-invariant metrics on the Heisenberg group H<inf>2n+1</inf>, of dimension 2n+1. We describe the space of all the left-invariant metrics of Riemannian and Lorentzian signatures up to automorphisms of the Heisenberg group. Thus, we classify quadratic forms of the corresponding signatures with respect to the action of the symplectic group. We also investigate the curvature properties and holonomy of these metrics. The most interesting is the Lorentzian metric with a parallel, null, central, left-invariant vector field. Rahmani proved that this metric is flat in the case of Heisenberg group H<inf>3</inf>. We show that this metric is not flat in higher dimensions.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Geometry and Physicsen_US
dc.subjectHeisenberg groupen_US
dc.subjectLeft-invariant metricen_US
dc.subjectLorentzian metricen_US
dc.titleClassification of left-invariant metrics on the Heisenberg groupen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2015.01.005-
dc.identifier.scopus2-s2.0-84928655687-
dc.identifier.isi000356111200007-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84928655687-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0393-0440en_US
dc.description.rankM22en_US
dc.relation.firstpage72en_US
dc.relation.lastpage80en_US
dc.relation.volume94en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 24, 2025

Page view(s)

16
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.