Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/609
DC FieldValueLanguage
dc.contributor.authorAlekseevsky, Dmitri V.en_US
dc.contributor.authorBlažić, Novicaen_US
dc.contributor.authorCortés, Vicenteen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2022-08-13T15:57:33Z-
dc.date.available2022-08-13T15:57:33Z-
dc.date.issued2005-03-01-
dc.identifier.issn03930440en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/609-
dc.description.abstractWe prove that a symmetric space is Osserman if its complexification is a complex hyper-Kähler symmetric space. This includes all pseudo-hyper-Kähler as well as para-hyper-Kähler symmetric spaces. We extend the classification of pseudo-hyper-Kähler symmetric spaces obtained by the first and the third author to the class of para-hyper-Kähler symmetric spaces. These manifolds are possible targets for the scalars of rigid N = 2 supersymmetric field theories with hypermultiplets on four-dimensional space-times with Euclidean signature. © 2004 Elsevier B.V. All rights reserved.en
dc.relation.ispartofJournal of Geometry and Physicsen
dc.subjectHyper-Kähler manifoldsen
dc.subjectOsserman spacesen
dc.subjectPara-hyper-Kähler manifoldsen
dc.subjectSymmetric spacesen
dc.titleA class of Osserman spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2004.07.004-
dc.identifier.scopus2-s2.0-10844239126-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/10844239126-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage345en
dc.relation.lastpage353en
dc.relation.volume53en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

14
checked on Nov 11, 2024

Page view(s)

18
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.