Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/609
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alekseevsky, Dmitri V. | en_US |
dc.contributor.author | Blažić, Novica | en_US |
dc.contributor.author | Cortés, Vicente | en_US |
dc.contributor.author | Vukmirović, Srđan | en_US |
dc.date.accessioned | 2022-08-13T15:57:33Z | - |
dc.date.available | 2022-08-13T15:57:33Z | - |
dc.date.issued | 2005-03-01 | - |
dc.identifier.issn | 03930440 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/609 | - |
dc.description.abstract | We prove that a symmetric space is Osserman if its complexification is a complex hyper-Kähler symmetric space. This includes all pseudo-hyper-Kähler as well as para-hyper-Kähler symmetric spaces. We extend the classification of pseudo-hyper-Kähler symmetric spaces obtained by the first and the third author to the class of para-hyper-Kähler symmetric spaces. These manifolds are possible targets for the scalars of rigid N = 2 supersymmetric field theories with hypermultiplets on four-dimensional space-times with Euclidean signature. © 2004 Elsevier B.V. All rights reserved. | en |
dc.relation.ispartof | Journal of Geometry and Physics | en |
dc.subject | Hyper-Kähler manifolds | en |
dc.subject | Osserman spaces | en |
dc.subject | Para-hyper-Kähler manifolds | en |
dc.subject | Symmetric spaces | en |
dc.title | A class of Osserman spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.geomphys.2004.07.004 | - |
dc.identifier.scopus | 2-s2.0-10844239126 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/10844239126 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 345 | en |
dc.relation.lastpage | 353 | en |
dc.relation.volume | 53 | en |
dc.relation.issue | 3 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-5135-869X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
14
checked on Nov 11, 2024
Page view(s)
18
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.